Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the past several decades, forests worldwide have experienced increases in biotic disturbances caused by insects and plant pathogens – a trend that is expected to continue with climate warming. Whereas the causes and effects of individual biotic disturbances are well studied, spatiotemporal interactions among multiple biotic disturbances are less so, despite their importance to ecosystem function and resilience. Here, we highlight an emerging phenomenon of “hotspots” of biotic disturbances (that is, two or more biotic disturbances that overlap in space and time), documenting trends in recent decades in temperate conifer forests of the western US. We also explore potential mechanisms behind and effects of biotic disturbance hotspots, with particular focus on how altered post‐disturbance recovery (successional pathways) can have profound consequences for ecosystem resilience and biodiversity conservation. Finally, we propose research directions that can elucidate drivers of biotic disturbance hotspots and their ecological effects at various spatial scales, and provide insight into this new knowledge frontier.more » « less
-
Context: Growth releases of individuals that survive disturbances are important compensatory response mechanisms that contribute to ecological resilience. However, the role of fine-scale spatial heterogeneity in shaping compensatory growth responses is poorly understood for many broad-scale disturbances. Objectives: We quantified how fine-scale spatial structure affects individual and aggregate tree growthleading up to and following a severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak. We asked: (1) How does individual tree growth vary with tree- and neighborhood-scale characteristics? (2) How do within-stand aggregate growth and overstory recruitment vary with neighborhood-scale characteristics? Methods: We used a spatially explicit long-term monitoring dataset of a subalpine lodgepole pine (Pinus contorta var. latifolia) forest (in Colorado, USA) in which every tree ≥ 5 cm diameter was measured and mapped prior to (1989, 2004) and following (2018) a severe MPB outbreak (2003–2011). We used spatial regression to characterize drivers of growth. Results: Overall, we found strong evidence for post-outbreak compensatory responses across spatial scales. Neighborhood characteristics shaped both individual and aggregate growth, with the magnitude of growth strongly mediated by pre-outbreak neighborhood structure and neighborhood mortality. Variation in tree-scale growth, combined with the spatial arrangement of surviving trees, resulted in highly variable emergent patterns of aggregate growth and recruitment. Conclusion: Our findings highlight the importance of fine-scale landscape configuration in shaping forest resilience. Quantifying compensatory responses in a spatially explicit framework at different scales is critical for modeling post-disturbance forest dynamics, which is increasingly important as climate warms and forest disturbance regimes change.more » « less
-
Abstract Escalating burned area in western US forests punctuated by the 2020 fire season has heightened the need to explore near-term macroscale forest-fire area trajectories. As fires remove fuels for subsequent fires, feedbacks may impose constraints on the otherwise climate-driven trend of increasing forest-fire area. Here, we test how fire-fuel feedbacks moderate near-term (2021–2050) climate-driven increases in forest-fire area across the western US. Assuming constant fuels, climate–fire models project a doubling of forest-fire area compared to 1991–2020. Fire-fuel feedbacks only modestly attenuate the projected increase in forest-fire area. Even models with strong feedbacks project increasing interannual variability in forest-fire area and more than a two-fold increase in the likelihood of years exceeding the 2020 fire season. Fuel limitations from fire-fuel feedbacks are unlikely to strongly constrain the profound climate-driven broad-scale increases in forest-fire area by the mid-21st century, highlighting the need for proactive adaptation to increased western US forest-fire impacts.more » « less
-
This paper shares the design principles of one Advanced Placement Computer Science Principles (AP CSP) course, Beauty and Joy of Computing (BJC), both for schools considering curriculum, and for developers in this still-new field. BJC students not only learn about CS, but do some and analyze its social implications; we feel that the job of enticing students into the field isn’t complete until students find programming, itself, something they enjoy and know they can do, and its key ideas accessible. Students must feel invited to use their own creativity and logic, and enjoy the power of their logic and the beauty and elegance of the code by which they express it. All kids need genuine challenge and sensible supports so all can have the joy of making—seeing themselves as creators, not just consumers, and seeing that it is their own intellect, not just our instructions, that is the source of that making. Framework standards are woven into a consistent social and intellectual storyline to give the curriculum integrity. Principles guide even our choice of programming language. Learners should focus on the logic and structure of their thinking, not on misplaced semicolons; attention to such syntactic detail is antithetical to broadening participation. We feature recursion and higher order functions because they beautifully exemplify abstraction, a key idea in CS and the CSP framework. BJC also places significant emphasis on the social implications of computing, balancing fundamental optimism about computing technology with a critical view of specific uses of technology.more » « less
-
Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the Southern Rocky Mountains, U.S.A.null (Ed.)Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance.more » « less
An official website of the United States government
